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ABSTRACT

Composite failures are microscopically sequential and locally redundant.

As a result, a composite structure reliability and its strength dependency on

geometric size is intimaely dependent on the statistics of fiber filament

strength. A composite reliability model is needed to utilize such inherent

materials redundancy in structural design. This investigation first establishes

the important role of fiber diameter measurement in the characterization of

fiber filament strength statistics and the composite reliability function, and

second, implements the diameter measurement by laser diffraction. This

method is automated and lends itself to industrial adoption for materials

development, acceptance and quality control.
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I. INTRODUCTION

Over the past decade, the advent of composite materials has radically

altered the field of structural design. Where the designer previously had a

finite number of materials with which to build, an infinite number of choices

are now available. Where design deficiencies previously could only be

corrected by modifying the geometry of a structure, adjusting the material of

the structure may now correct the problem. Where peculiar loading or stability

problems previously resulted in massive, overdesigned structures, the

technology now exists to design light and ,dficient ones. In short, the ability to

design a material to meet precise specifications has unshackled the designer

from previous conventional limitations and provided much greater flexibility.

The capability to design the material for an application does not come

without some costs. The ability to exploit the directional characteristics of

composite materials also requires that many more variables be optimized

during the design phase of a project. The manufacturing process is much more

complex, and structural repair requires different approaches. The failure

mechanisms of composite materials are microscopically sequential, and

reliability, life, and strength estimates for complicated structures are difficult to

predict. Finally, structures can be very expensive to -construct, frequently

precluding extensive destructive testing.

Composite failures are microscopically sequential and locally redundant.

In order to utilize microscopic redundancy of composites in structural design, a

realistic reliability model is needed. The chain-of-bundles model [Refs. 1 and 2]

relates fiber filament failure (which is serial) to composite failure (which is

9PI



locally parallel). With this model, if statistical parameters for the fiber

filaments are aLcurately known, the statistical strength parameters for the

composite can be determined. With the composite statistical strength model,

the composite reliability dependency on the structural dimensional size and

service stress level can be quantified.

Traditionally, the statistical strength parameters for fibers are measured in

terms of failure loads. This investigation first focused on the importance of

accounting for the diameter variations in the statistical characterization of

fibers. An analysis of the stochastic interaction of the randomness in failure

load and in fiber diameter demonstrated the importance of fiber diameter

measurement in the resulting composite reliability characterization. Second,

the implementation of such diameter measurements was accomplished by an

automated, highly accurate process involving the computer digitization and

processing of a laser diffraction pattern from a single fiber, which is presented

and discussed.

10



H. BACKGROUND

Structural design of composite material structures uses the concept of

stress, or force per area, as a method of parameters reduction. Loads can be

measured very precisely, but accurately measuring the diameters of the fibers

that typically make up a composite ply is difficult. Fibers frequently have

diameters on the order of 10 gm, or approximately ten times finer than a

human hair.

To date, it has been common to use an average diameter for calculations.

However, extreme value parameters such as strength, life, and ultimate stress

are more correctly described by a statistical distribution of values. As a result,

paradoxically, structural design and analysis are based on stress; wherers, the

materials parameters (strength) input into the analysis are based on force. This

inconsistency may lead to erroneous and perhaps nonconservative designs.

For example. the statistical parameters for fiber strength (mean, variability) in

terms of stress may change when the statistical scatter in fiber diameter is

accounted for. If the statistical distribution of the diameter of the fibers could be

used in calculations instead of the averaged values, important parameters such

as life, strength, and stress could be modeled much more accurately than is

currently possible.

A. LIFE

Service lives of composite material structures are frequently measured in

large time units of mean life, such as thousands or millions of years. Large

mean lives is a consequence of large life variability, which is typically three

Ddecades or more. A large mean life in millions of years is needed to assure

11
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high reliable life in tens of years. Since the fibers for many high performance

composites have been synthesized only recently, no service experiences are

available. Obviously, it is impractical to establish a statistical distribution of life

expectancy in real time, so a suitable method of time acceleration needs to be

established. Typically, the stress or strength of a specimen is related to the life

of the specimen, where high strength is indicative of long life and low strength

is indicative of short life. Phoenix and Wu [Ref. 31 showed that the level of

stress used for life measurement is critical and Flat a very small change in

stress may change the life estimate by an order of magnitude or more.

Knowing the diameter of the fibers in a composite materials is thus crucial if

accurate life estimates are desired.

B. RELIABILITY

Reliability is the probability that a structure will not fail. Usually,

reliability is expressed in terms of failure stress or life expectancy. For small

structures, a statistical distribution of failures can be experimentally obtained,

an appropriate curve fit to the data, and reliability can be quantified. However,

with large structures, statistics through destructive testing is cost prohibitive.

One method of quantifying the reliability of large structures involves a

sequence of probabilistic mathematical mnodels. First, a relationship between a

snsin gle fiber and a single composite ply (many fibers) is postulated. Similarly, a

relationship between a single ply and a large structure can be established. In

this way, the distribution of characteristic parameters for single fibers can be

extrapolated to enormous structures and probabilistic reliability estimates can

be made to useful precision. Again, because stress is dependent on the cross

sectional area, or diameter, of the fiber, accurate diameter estimates are

necessary. [Refs. 4-61

12
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III. DIAMETER AS A STOCHASTIC VARIABLE

The structural design process typically uses stress, strain, and their

combination, strength, as primary variables. Strictly speaking, strength

parameters in terms of loads should not be used in stress analysis without

accounting for the probabilistic interaction of the random variables. Strain is

directly observable when tensile failure load is measured. However, because

stress cannot be measured directly, laboratory analyses must measure force and

area and calculate the stress using an equation (stress equals force divided by

area). If the cross sectional area is a deterministic (rather than stochastic, or

random) variable, the statistical strength based on stress and that based on load

will differ only by a constant. If the cross sectional area is not deterministic,

there will be a nonlinear relationship between stress and load distribv.tions.

A. OBSERVATION BY COMPUTER SIMULATION

Appendix A is a discussion of the analytical interaction of the random

variables failure load, cross sectional area, and failure stress. Here, computer

simulation is used to illustrate the characteristic relationship between these

variables. For a given set of fiber samples, both the failure loads and the cross

sectional areas will have a statistically distributed rarge of values. On the

physical grounds that a filament fails by the weakest link process, a two

parameter Weibull distribution [Ref. 7] can be used to model the failure loads.

The appropriate distribution function to best model the diameters of the fibers

will vary with the manufacturing process. It may be argued that drawn fibers

will have an upper bound diameter limited by the oriface. Other factors that

may affect the diameter of the fibers include the rate of extrusion, the ambient

13



temperature, the viscosity of the fiber material, and the handling and loading

of the fibers after fabrication. Rational modeling of the distribution for fiber

diameters to account for these effects are outside the realm of this

investigation. For illustration herein, a truncated normal distribution

(diameter always positive) was used to represent the range of diameter values.

A series of computer simulation experiments was conducted to simulate

independent distributions of fiber diameter and fiber failure load using

truncated normal and Weibull distiibutions respectively. Standard deviations

for the fiber diameter distribution of 5%, 10%, and 20% were used. The stress

was calculated for each sample and Weibull parameters were determined for

the stress distributions [Ref. 8: pp. 426-7]. Table 1 summarizes the results of the

simulations. The shape parameter a for stress was always less than that for

load, and the magnitude of the difference between the two values was a

function of the standard deviation of the fiber diameter distribution. Figure 1

illustrates the apparent relationship observed via numerical simulation

between fiber diameter standard deviation and the change in the shape

parameter .

TABLE 1. RESULTS OF COMPUTER SIMULATION

Std Dev. of
Diameter, a aload astress (Otload Ostress )/ ( Ioad )

0.05 4.979 4.946 0.0066

0.10 4.947 4.855 0.0185

0.20 5.033 4.496 0.0670

The shape parameter of the Weibull distribution is approximately inversely

14



proportional to the variability. The physical consequences of characterizing
failure strength by load (i.e., not accounting for diameter variation) is an

underestimate of the variability of the intrinsic strength. That is, the strength

variability measured by load is lower than the actual strength variability

measured by stress (accounting for diameter variation). The effect of such error

in the shape parameter estimate on the reliability of a large structure is

discussed in the following section.

0.08

-. 0.06 . - -

.' 0.04

0.02

0.00- x116 t718 R 1 1.00

0.0 0.1 0.2 0.3
Fiber Diameter Standard Deviation

Figure 1. Effect of Fiber Diameter Standard Deviation on Shape Parameter cc

B. ESTIMATING BOUNDS FOR RELIABILITY

Substantial amounts of research have been published on the subject of

estimation of composite material reliability from the statistical properties of

fiber strength. Phoenix and Smith [Ref. 5] summarized the work of Harlow and

Phoenix [Refs. 1, 2, 9-11] and others and provided three methods of estimating

the strength of fibrous composite materials using a chain-of-bundles model

with local load-sharing between adjacent fibers. One of these results is used in

this investigation; it estimated the composite statistical strength distribution

W(x) with

15 A
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W(x) = minF[ki(x), x > 0; k = 1, 2, 3,... (1)

where

F[k](x) = I - exp {dk (x /)ka, x _ 0 (2)

dk = dk(C) = 2(k-1) (K1 K2 ... Kk_1 ) a (3)

Kr = 1+r/2, r = 1,2,3,... (4)

[Ref. 51

k = 1 is the condition that when one filament fails, the entire structure fails; the

representation of a single filament. Therefore, given the statistical

representation of a single filament, i.e., F[lI(x), the probability of composite
failure can be estimated from W(x) by using Equation 1.

The relationship between the single fiber strength distribution F('](x) and

the composite structvre distribution W(x) is illustrated in Figure 2 (in Weibull

probability coordinates). Three important relations are observed.

(1) The composite distribution is no longer linear in the Weibull probability
space (i.e., the composite failure is no 1o1 ger serial).

(2) The slope (shape parameter) of the fiber strength distribution controls the
slope o the composite distribution at the upper tail.

(3) Small changes in the upper tail slope leads to amplified "rotation" of the
lower tail stope.

The third observation is of greatest structural importance. The reliability

of Figure 2 is normalized for the physical dimension of the interface ineffective

length (approximately 10 Df or 50 gm). The equivalent size for a rocket motor

case (measured in this scale) is on the order of 1025. That is, the portion of the

function W(x) which controls the reliability of large structures is around

Pf = 10-25. There, operating at small values of ( x / f5 ) or, equivalently, with

large structures, will necessitate accurate estimates of ar if accurate distributions

W(x) are required.

16
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Figure 2. Sensitivity of Composite Material Reliability to Shape Parameter a

C. EFFECT OF THE DIAMETER DISTRIBUTION ON RELIABILITY

The stress distribution based on the results of the computer simulation for

a 20% standard deviation in fiber diameter is plotted in Figure 3. Clearly, the

use of a stochastic diameter variable rather than a deterministic one changes

the value of ( x / 3)for a given structure size and desired reliabilt.! the

standard deviation of the diameter of the fibers used to build a structure with

fibrous composite materials was 20%, the structure would be potentially unsafe,

because at a given structural load ( x / f3) the probability of failure predicted

using the inappropriate parameter, load, is in fact lower.

Hence, it is numerically demonstrated that ignoring the statistical

variation in fiber diameter can lead to an erroneous shape parameter slope

based on load, which in turn "rotates" the upper tail slope of the composite

distribution, causing a nonconservative error in the lower tail. Because the

lower tail is divergent, as the structure becomes larger, the error introduced by

the ignoring the fiber diameter becomes more severe.
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IV. DIAMETER MEASUREMENT

Several methods of measuring the diameters of very small fibers are

available. Each method has advantages and disadvantages. With the goal of

transferring fiber diameter measurement from the laboratory to quantify

assurance in materials and manufacturing, this thesis work advocates the use

of an automated approach using laser diffraction.

A. METHODS AVAILABLE

Measuring the diameter of a fiber that is on the order of 10 gm requires

careful consideration. Some methods that provide precise results may damage

the specimen, thus trivializing the measurement process.

1. Optical Microscope

The optical microscope is fast, simple, inexpensive, is commonly

availab!e, and can produce precise results. However, it requires direct human

manipulation and interpretation, has limited resolution, and can be fatiguing

for the operator if large number- of measurements are to be made.

2. Electron Microscope

The electron microscope produces very precise results, has excellent

resolution, is less dependent on operator skill, and is not fatiguing for the

operator. However, the equipment is very expensive, is not commonly

available, and the process requires preireating the samples with a conductive

coating that may alter the strength of the sample.

3. Photoconductive Cel

Previous thesis research by Bennett [Ref. 12] demonstrated that

locating the minimums of a diffraction pattern using a photoconductive cell

19
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and applying these minimums to the classic Fraunhofer diffraction pattern

theory (see Appendix B) yielded reasonable results. The method has the

advantages of being nondestructive to the sample and of using inexpensive

equipment. However, the precision of the measurement is dependent on the

skill of the operator, the process is tedious, and some postprocessing calculation

is required.

B. AUTOMATED APPROACH USING LASER DIFFRACTION

The diffraction theory for a slit and for a fiber are discussed in detail in

Appendix B. These theories have been applied together with some
inexpensive equipment to produce an automated system for measuring the I
diameter of a fiber to within 1% in less than 30 seconds.

1. Hardware

The following pieces of equipment were used in the automated

diameter measuring system.

a. MicronEyerM

Each MicronEyeTM system consists of a IS32 OpticRAM chip .

mounted behind a camera lens and connected to a computer interface device.

Briefly, the IS32 OpticRAM chip is a conventional computer memory chip with

its protective cover removed, exposing its rectangular array of light sensitive

pixels. These pixels can be interfaced with a computer. The specific technical

data for the 1S32 OpticRAM, the heart of the MicronEye TM system, is contained

in Reference 13. The horizontal resolution is better than 9 gm per pixel, and

the chip is sensitive to light with wavelengths up to near the ultraviolet range.

Two MicronEyeTM systems were used.

b. MacintoshTM Computer

The MacintoshTM computer was selected for its high resolution

20



graphics cp-.,bility, its ease of interface with the MicronEyeM, its ease of use by

the operator, its speed of calculation, and its ability to handle a large number of

significant digits during calculations.

c. Helium-Neon Laser

A low power 1 mW Helium-Neon laser was used as a collimated

light source. The wavelength of a Helium-Neon laser is 0.6328 tm.

d. Digital Caliper

A digital caliper was used to measure the distance between the

two Mic.ronEyesM. The caliper was able to measure distances within 0.01 mm.

2. Software

The MacintoshT application CALIPER was written as part of this

thesis research. The source code is contained in Appendix C. The

programming language C was chosen because of its powerful graphics

capabilifies and because of its speed of execution on the MacintoshT1'.

3. Equipment Setup

Figure 4 is a schematic diagram of the system. The laser, fiber support

stand, and MicronEyes TM were all mounted on a stiff table using rigid rails.

The MicronEyeTM were mounted to tables on the rails that had integral

micrometers for precise adjustment. The MicronEyesTM were connected to the

MacintoshTM computer -ia interface devices. The digital caliper was mounted

to the MicronEyeTM supports. The fibers were mounted to cardboard holders

that were in turn clamped in a support .tand. The support stand was mounted

to a table on the rails that had micrometers to allow precise adjustment in the

directions parallel and perpendicular to the laser beam. Figure 5 shows how a

fiber was mounted for measurement.

r
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MicronEyeTM

Digital 0
Caliper Fiber

He-Ne
Laser

MicronEyeTM

q interfaece I

Sinterface

device : - --

MacintoshTM

Figure 4. Schematic of an Automated Diameter Measuring System

adhesive

cardboard

fiber

open

adhesive

Figure 5. Mounting a Fiber Sample for Measurement
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4. Procedure

A cardboard mounted fiber was placed in the support stand and the

stand was adjusted to place the fiber in the center of the laser beam. The

MicronEyesTM were then centered on diffraction pattern minimums

symmetrically about the centerline of the laser beam. The system geometry was

input to the CALIPER program by the operator at the beginning of program

execution and after any movement of the components. Typically, once the

equipment was positioned, many fibers with similar diameters could be

measured without requiring readjustment of the equipment.

Exposure times were adjusted until distinct minimums were located

on the MacintoshT screen for both MicronEyesTM (one diffraction pattern at a
time). Figure 6 shows the desired display for one image. Again, once the

exposure settings were determined for one fiber, they were applicable for all

fibers with similar diameters.

• - . - . . .,, . ' .,*.

Figure 6. Centering Diffraction Minimums

After all data had been entered and all equipment adjusted, the
program would digitize the diffraction patterns, process them, and report the

diameter of the fiber by three methods: using just the left-hand MicronEyeTM ,

using just the right-hand MicronEye TM , and using an average of the two

results.

23
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5. Computer Algorithm

If the minimums of the diffraction pattern of a fiber could be

accurately located and measured, then the methods outlined in Appendix B

could be applied and the diameter recovered with very high precision and

accuracy. However, to locate these minimums exactly would require many

exposures, and each exposure would require interaction with the operator. A

faster and only slightly less accurate method uses only one exposure per

MicronEyeT'M.

It is known that the minimum lies between points A and B on the

diffraction pattern shown in Figure 7. The minimum is very close to half way

point A point B

.'NNs* .~.. ,N \,,

N ~ N'

S"" %N~ Pv
% 1%1.~ If I

center of the
diffraction pattern

Figure 7. Approximating the Diffraction Pattern Minimum

between points A and B. If the diameter is calculated under the assumption

that the minimum is located at point A, the result will be too small. If the

diameter is calculated using point B as the minimum, the result will be too

large. If the results are averaged, the result is very close to the actual diameter.

Computer simulation using this method rpsuflt-d in err-r of 1ess than n 1% C
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6. Finding the Center of the Diffraction Pattern

The methods of Appendix B require the scattering angle 6 to be

known. The only practical method of measuring this angle is by measuring the

distance s from the fiber to the plane of the MicronEyesTM and the distance x

from the centerline of the pattern to the point where the angle is desired to be

known. Figure 8 illustrates this geometry.

plane of the

diffraction pattern

MicronEye TM

0 Fiber

MicronEye TM

Vs

Figure 8. System Geometry

Small variations in the distance s will be negligible if s is chosen large

with respect to x. However, small variations in x will be significant. Two

MicronEyes TM were used to improve the resolution of the measurement of the

distance x. Figure 9 shows how using two MicronEyes TM can locate the

diffraction pattern center automatically, thereby reducing the error in

measuring the distance x.
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Storch [Ref. 14] advocated optimizing the geometry of Figure 8 to

yield two diffraction pattern minimurns per MicronEye M. This approach was

not used for several reasons. First, an automatic diffraction p --. rn centering

X X2-

82

x1+ X2 X + 81 + 52

note that x1  X / 2 + 8
X2 X/2 +52

Figure 9. Locating the Center of the Diffraction Pattern

scheme was deemed preferable to a manual one. Second, the resolution of the

measurement of the angle 0 was improved by using a larger percentage of the

MicronEye TM sensor area. Third, by allowing a larger distance s between the

fiber and the MicronEye M, sensitivity to errors in measuring s could be

reduced. A larger distance s also allowed observation of small order diffraction

pattern minimums (n = 1, 2) further from the very intense center of the

diffraction pattern.

7. Summary of the Automated Approach

The approach presented above is fast, inexpensive, automatic, simple

26
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to operate, and very accurate. By properly selecting a laser based on the range of

diameters to be measured (as discussed in Appendix B) fibers can be measured

to within 1% or better over a range of diameters from less than 1 gm to more

than 50gm.

2I
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V. RESULTS

The results for the two sections of this thesis research are summarized

below.

A. DIAMETER AS A STOCHASTIC VARIABLE

It was demonstrated that statistical parameters of composites are relatable

to the statistical fiber strength parameter by the chain-of-bundles model [Refs. 1

ata 2]. Treating fiber diameter as a stochastic variable in reliability

computations for composite materials consistently predicted weaker structures

than when diameter was treated as a deterministic variable. Representing fiber

diameter with a truncated Gaussian distribution and failure load with a two

parameter Weibull distribution yielded a failure stress distribution that was

accurately modelled by a two parameter Weibull distribution. Small variance

in the shape parameter (x for the distribution of a single fiber was seen to have a

large effect on reliability predictions both for lightly loaded structures and for

very large structures.

B. DIAMETER MEASUREMENT

By properly selecting a laser based on the range of diameters to be

measured, the automatic system presented can measure fibers to within 1% or

better over a range of diameters from less than i gim to more than 50 jILm.

Using an error function to directly relate Fraunhofer slit diffraction results to

Kerker's [Ref. 15: p. 255] method for calculating the diffraction pattern of a fiber

nrn iii . l .iir f rsci.fc :n . ci .nific' nfh. . y r....... .... H" . . . . P.

memory requirements.
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VI. CONCLUSIONS

Composite structural reliability depends strongly on the strength

variability, or shape parameter, for the consistent single fiber filament. Very

large composite structures with high required reliability levels are especially

sensitive to the shape parameter of the fiber and its accurate estimation. The

shape parameter a for failure stress depends on the stochastic interaction of

both the failure load and the fiber diameter. Obtaining a statistical distribution

of values for fiber diameter will necessitate an automatic, highly accurate

measuring system. The presented system consisting of a MacintoshTM

computer, two MicronEyeTM light sensitive computer chips, and a low power

Helium-Neon laser is an economical method of providing very accurate fiber

diameter measurements, and hence, very accurate estimates of a. Most

importantly, this method is automated and lends itself to industrial adoption

for materials acceptance and quality control.

bv,

29



APPENDIX A. PROBABILISTIC INTERACTION OF MULTIPLE RANDOM

VARIABLES

Filament strengths are traditionally measured in terms of failure loads

and the statistical parameters are defined in terms of load. Structural design

and analysis are operated in terms of stress. Therefore strength parameters in

terms of load should not be used in stress analysis without accounting for the

probabilistic interaction of the random variables. This is acceptable only if the

area is a deterministic variable.

The following is ' zutline of how the distribution function Fs(s), a

function of the stochastic ftinctions fD(d) and Fp(p), can be obtained.

1. VARIABLE DEFINITIONS

The following variables are hereby identified and defined:

P - Random (stochasic) failure load

p - realized failure load

A - Random area defined in terms of diameter D

a - realized area

D - Random diameter

d - realized diameter

S - Random failure stress

s - realized failure stress

Fp - Two parameter Weibull distribution

FD - Truncated normal distribution

Fx(x) - Cumulative Distribution Function (CDF) for random variable X

fx(Y) - Probahility flPnsif-y Function (PDF) for random variahlp )

a, [3 - Parameters used to describe a Weibull statistical distribution
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, a - Parameters used to describe a Gaussian statistical distribution

2. IMPORTANT RELATIONSHIPS

S a P/A (A.1)

A = 7D 2 /4 (A.2)

Fp(p) a Pr{P_<p}, 0<p<oo (A.3)

FD(d) = Pr{D d}, 0_<do5 (A.4)

in general

Fx(x) a Pr{X5x} (A.5)

fx(x) = Pr{X=x} (A.6)

3. GOAL

Equation A.1 and Equation A.2 relate failure stress S to failure load P and

cross sectional area A. If P and A are deterministic variables, then calculating S

is straightforward. If A is deterministic and P is stochastic, then

Fs(s) Fp(p) / A (A.7)

which is again straight forward. However, if P and A are both stochastic

variables, then the division operator has no meaning. In other words,

Fs(s) # Fp(p) / FA(a) (A.8)

because the term [ Fp(p) / FA(a)] is undefined. Thus, the goal is to obtain an

expression for Fs(s), an unknown, in terms of known quantities.

4. OUTLINE

If a series of many experiments were conducted that measured both the

failure load and the cross sectional area of a fiber, the failure stress for each fiber

could be derfrmined If matching nairs, of failure load P and cross sectional area

A were plotted, the failure stress S would be represented by the slope of a line

drawn from the origin to the point. See Figure Al. The cumulative
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distribution function (CDF) for failure stress, Fs(s), may be thought of as the

sum of all the slopes that are less than s; this defines the domain of integration

P

(P2, a2)

(p1, a,)

~.s (P3 , a3)

3A

Figure Al. Stress is the Slope of a Line Drawn From the Origin

and is illustrated in Figure A2. Thus, Fs(s) is the shaded area under the curve

in Figure A2.

P

S

A

Figure A2. Illustrating the Domain of Integration
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In equation form
Fs(s) = fY-, fx=Ys fP,A(xy)dxdy (A.9)

y=0 x=O

where fp,A(p,a) is the joint probability distribution of P and A. If P and A are

independent variables, then

fP,A(p,a) = fA(a) fp(p) (A.10)

Combining Equation A.9 and Equation A.10

Fsy() f f [fA(Y) fp(W dx dy

x= AY) [f XYfp(x) dx] dy (A.11)

However,

X=" X=O x=PFP (p) f = fp (x) dx = f (x) dx + fj=f p W dx

f x=p

' X= fp(x) dx (all loads presumed positive) (A.12)

So, Equation A.11 and Equation A.12 give

FS(S) = Y fA(y)Fp(ys)dy (A.13)
y=O

Also, note that

fA(a)= Pr{A=a} = Pr{(itD2/4)-a} = Pr{D 2 =(4a/r)}

SPr{ D = (4 a / 7c)0.5 ) = fD( (4 a / 7)0.5 ) (A.14)

The fact that D >0 eliminates negative roots.

Choose specific distribution functions to represent D and P.

Fp(p) = 1-exp [(p/p)a], p 0

(A. 1~

where ox and 3 are shape and scale variables, respectively (a two parameter

Weibull distribution.)
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fD(d) = exp [-(d -)2/ (2a 2) a (2 iC)0.5 ), d 0

(A.16)

where g is the mean and a is the standard drviation (a truncated Gaussian

distribution). Equation A.14 and Equation A.16 combine to give

fA(a) = fD((4 a / 7)0.5) = exp[ - ((4ai/0 0-5 - j)2 / (2 a2)] / (a (2 7c)0.5 ) (A.17)

Equation A.13, Equation A.15, and Equation A.17 can now be corbined to

give

F f (s) exp 4y 05 -

f a(2) 0.5 2 Y21

y=o

[1exp {-(y s/[)} dy (A.18)

Equation A.18 can be integrated numerically for any s 0 if the four

constants cx, 3, pt, and a are specified. The constants cc and P3 come from fitting a

two parameter Weibull distribution to the failure load data. The constants g

and a come from fitting a truncated normal distribution to the fiber diameter

data.

5. SUMMARY

The CDF for failure stress S of a fiber can be obtained from experimental

data using stochastic representations of failure load P and fiber diameter D by

using Equation A.18 if P and D are assumed to be independent variables. A

truncated Gaussian distribution was used for illustration purposes to represent

the fiber diameter, but the method can be easily extended to other statistical

representations.
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APPENDIX B. LASER DIFFRACTION THEORY

This appendix discusses in detail the laser diffraction theories that were

used during this investigation. The diffraction of a slit, the diffraction of a

fiber, and a method of relating the two patterns are outlined and described in

detail. Finally, the utility of these theories and their application are illustrated.

1. FRAUNHOFER DIFFRACTION

Characteristic diffraction patterns are produced by a sheet of laser light

passing through a long slit when the wavelength of the laser light and the

diameter of the slit are of the same order of magnitude. The Fraunhofer

diffraction theory is well documented in most Physics textbooks. The following

discussion was taken substantially from Tipler [Ref. 16: Chapter 25].

If the light that passes through the slit of diameter Ds is represented by N

equally spaced point sources of equal amplitude light, then the diffraction

pattern at any point far from the slit can be obtained by the vector summation

of the contributions from each source. Consider Figure B1. If the distance to

the point P where the pattern is being calculated is sufficiently far from the slit

so that the rays from any two sources are essentially parallel, then the path

difference between any two sources is

= d sin 0 (B.1)

where d is the distance between the sources. The phase difference between the

two sources is then

= 25 / X = 2ndsin0/X (B.2)

The phase difference between any two sources that are Ds / 2 apart is

F = 2id sin /X = 2K[(Ds/2) sin6]/ = k 7Dssin /. (B.3)
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to point P

N D0

sources Ds

d

Id sine

Figure B1. Modelling Fraunhofer Slit Diffraction

If r = n, then for every source contributing to the diffraction pattern

there is another source that is exactly 1800 out of phase with it and will exactly

cancel the contribution. The result is a minimum of the diffraction pattern, as

illustrated in Figure B2. Letting F = ic in Equation B.3 produces a more useful

expression for a minimum of the diffraction pattern

sine = n), / Ds n = 1, 2,3,... (B.4)

where n is the number of the minimum as indexed from the center of the

diffraction pattern.

If the amplitude of each individual source is Ai, then the magnitude of the

diffraction pattern at any point P far from the slit and offset from the centerline

by an angle 0 can be calculated. Let (D be the phase difference

bhtee3n fhe slit edgsO Enatinn R 9 thon qhnwq that

C. = 2 rDssinO/k (B.5)
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n=3

n 2

"n

Ds sine = n

......... .......... C

HDsH

Figure B2. Minimums of the Fraunhofer Diffraction Pattern of a Slit

and the total contribution to the total amplitude A from all of the individual

sources is
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Ds / 2

A =A(Ds,X,0) = A()=2JAicos(-AD)dx

sin( x ) x=Ds/2 sin(-)
=2A = Ds Ai _D.2 (B.6)

Ds x=O 2

Normalizing by the amplitude at the center of the diffraction pattern gives

sin (D).1Cos (-!)
Ao =DsAi lim 2 = DsA lia 2 2 DsAi (B.7)

(D->0 (D) 4, 0 1
2 2

sin (-)
A (B8)

Ao D
2

Relative intensity is more iiseful than relative amplitude and is given by

I ! 2  t~in(-'2 2

Io Ao 4)(B.9)

2

Figure B3 is a normalized plot of the Fraunhofer diffraction pattern using

Equation B.9.
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o 10
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104

"- -3

-1080 -720 -360 0 360 720 1080
Phase Difference Phi Between Slit Edges (degrees)

Figure B3. Normalized Fraunhofer Diffraction Pattern of a Slit

2. DIFFRACTION OF A SINGLE FIBER

The diffraction pattern of a fiber can be calculated directly using the

method outlined in Kerker [Ref. 15: p. 255]. If the index of refraction of the

fiber is assumed to be perfect (m -o), then the relative intensity of a fiber of

diameter Df can be expressed by

2
I 2 bo + 21bcos(n0) (B.10)
Io Ko s i n=1

where

Ko = 2 7/uX

0 is the scattering angle

s is the fiber to screen distance

X is the wavelength of the laser light

bn = Jn(a) / Hn(2 CC)

a = nt/Df/ /X

Jn(a) are Bessel functions of the first kind
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IHn(2)((x) are Hankel functions of the second kind

[Refs. 15 and 17]

The bn coefficients can be simplified by some simple algebra.

Hn(2)(Co) = Jn (a) - i Yn (a) (B.11)

where Yn (a) are Bessel functions of the second kind.

Jn (o) Jn (o0 Jn (a) + i Yn ((X)
bn = - =

(2)H n ) J(c)- i Yn (X) Jn () + i Yn ()

=J (c))2 + J(t) Yn(00

(n(0c)) 2 + (Yn(a)) 2  (Jn(X) 2 + Yn(a)) 2

= Rn + iSn (B.12)

(J(a) 
2

Rn = -(B.13)
(Jn(O0) 2 + (yn((X)) 2

+n (Y0" (a))

Sn = 2 2 (B.14)

(Jn(a))
2 + (Yn(aO)

2

Thus, the relative intensity equation can be rewritten
2V

1 2 rL 00

S Kos t cos (n

+ o + 21Sncos(n ] (B.15)
(S n=1

[Ret. 14]
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A. Minimum Number of Terms

Figure B4 and Figure B5 illustrate the fact that as a (which is

proportional to the fiber diameter, Equation B.10) increases, the number of

terms n that must be computed in each summation to achieve a specified

.d 140

0 120 10^(-12,

100

08060

20

0 20 40 60 80 100

Figure B4. Summing Rn Within a Desired Accuracy

S140

S 120 JA-2

100j 80

60
) 40 10 (-4)

20

z
20

0 20 40 60 80 100

Figure B5. Summing Sn Within a Desired Accuracy
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accuracy also increases. The specified accuracy can always be achieved for the

Rn summation with fewer terms than for the Sn summation. The number of

terms n required to achieve an accuracy of 10-12 for any ox such that

5 < ox < 100 can be predicted from a parabolic fit of the data in Figure B5.

ncalculated = 16 + 1.3o( - 0.0013 (X 2  (B.16)

0 < (calculated - nexact) <= 4 (B.17)

B. Maximum Number of Terms

For small values of cc (associated with small fibers) there exists a

maximum number of terms that can be used in the Rn and Sn summations.

The Bessel functions of the second kind Yn asymptotically approach -o as ox

approaches zero. Underfiow will occur at different values of a for different

computers depending on the smallest number that can be represented. Values

of ac greater than five present no particular difficulty using double precision

FORTRAN.

The minimum diameter fiber that can be measured with a specified

laser can be calculated using the wavelength of the laser.

a c = Df / X (B.18)

Df = a 2/ic (B.19)

C > 5 = (Dfr)min = (5/ir)X = 1.592 X (B.20)

Equivalently, a laser may be selected based on the minimum diameter fiber to

be measured.

Xmin = (nt / 5 ) Df = 0.628 Df (B.21)

Clearly, if very small diameter fibers are to be measured and the

magnitude of the calculations on the computer to be used appears unwieldy,

one potential solution would be to choose a laser with a minimum

wavelength.
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3. COMPARISON OF THE TWO MODELS

The Fraunhofer slit diffraction pattern and the diffraction pattern from a

fiber are similar in shape, but are related in a nonlinear fashion. Figure B6

shows the diffraction patterns for a slit and a fiber with the same diameters

using Equation B.9 and Equation B.10. The distance between the minimums of

the slit pattern and the corresponding minimums of the fiber pattern increases

progressively as the distance from the centerline increases.

increasing distances between minimums

10

101

-1
1Fiber

. 10 -2 -,
~Slit

-3
10

0.0 0.1 0.2 0.3 0.4
Theta (radians)

Figure B6. Diffraction Patterns of a Slit and a Fiber Having the Same Diameter

4. FIBER DIAMETER MEASUREMENT USING LASER DIFFRACTION

Diffraction pattern minimums are easily distinguished and lend

themselves to measurement. Measurements of the locations of the

minimums with respect to the center of the diffraction pattern are sufficient to

accurately compute the diameter of the fiber or slit that caused the pattern.

One of the effects that varying Ds in Equation B.5 has is changing the

location of the diffraction pattern minimums. Figure B7 shows that the
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diffraction pattern for a fiber with a diameter of 8 tm has its first minimum at

the same location as the diffraction pattern for a slit with a diameter of 8.34 gm.

This relationship between the slit and the fiber at the first diffractic, pattern

minimun can be mapped over a wide range of diameters and can be extended

to the second minimum, etc. If the difference between the two diameters is

expressed as a percentage of the slit diameter the relationship can be

approximated very accurately by

(Ds- D) / Ds = Ki Ds K2 (B.22)

where Ki and K2 are constants and Ds and Df are the diameters of the slit and

101
first minimums in same location

100
Df =8 w

10 , °"1Ds =8.34 gm

-10

09 1 0A

0.0 0.1 0.2 0.3 0.4
Theta (radians)

Figure B7. Fiber and Slit Having First Diffraction Pattern Minimums at the
Same Location

the fiber. Figure B8 is plot of Equation B.22 for the first and sixth minimums of

the diffraction patterns. Clearly, Ki and K2 are functions of the number of the

diffraction pattern minimum as indexed from the center of the pattern.

Equation B.22 can be solved for the fiber diameter Df
Df = Ds [1 - Ki Wn Ds K2 Wn] (B.23)

where n is the number of the diffraction pattern minimum.
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, A y =1.434e-5 *x-0.6829 .

.y = 1.295e-6 * x^-0 .9271

sin d )Cn, n for n 6
0.05

nl

0.00 , , , , ,
Oe+O le-5 2e-5 3e-5 4e-5 5e-5

Ds (ireters)

Figure B8. Percentage Error in Diameter Between a Slit and a Fiber

Note that for a given X / Ds ratio, Equation B.4 predicts a maximum

~number n of observable minimums in the diffraction pattern (because

sin 0 < 1). Conversely, for a given node and specified X. there will be a limiting

value of Ds such that Ds > n X. A further restriction comes from Fraunhofer

diffraction theory, which makes use of a small angle approximation

tan 0 = sin 0 = 0 that limits 0 < 150. For a specified X and node number n, there

exists a minimum Ds below which the relationship between slit and fiber

diffraction is physically invalid. In Figure B8, with n = 6 and X = 0.6328 tm,

(Ds)min = (6)(0.6328 .n) / sin(150 ) = 14.7 4m, although close correlation exists

for Ds as small as approximately 11 ptm.

Knowing the relationship between the slit diffraction pattern and the fiber

diffraction pattern significantly reduces the required amount of effort required

to accurately estimate the fiber diameter. The slit diffraction pattern

calculations are simpie, and the coeficiielib Ki dUd IMx Ue oUy b' .,1ulatcU

once. Table BI summarizes the values of Ki and K2 as functions of n.
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Equation B.24, Equation B.25, and Equation B.26 summarize the polynomial

functions Ki(n) and K2(n).

TABLE B1. COEFFICIENTS FOR RELATING SLIT DIFFRACTION

TO FIBER DIFFRACTION
~I)

n Ki K2

1 1.434 x 10-5 -0.6829

2 9.362 x 10-6 -0.7247

3 5.480 x 106 -0.7780

4 3.165 x 10-6  -0.8334

5 1.890 x 10-5 -0.8865

6 1.295 x 106 -0.9271

(Ds- D) / Ds = Ki(n) Ds K2(n) (B.24)

Ki(n) = [17.7800 - 1.01925 n - 3.56279 n2 + 1.31954 n3

0.187208 n4 + 9.70833e-3 n5 ] 10-6 (B.25)

K2(n) = (-0.67780) + (2.77600e-2) n + (- 4.26917e-2) n2

+ (1.130e-2) n3 + (-1.55833e-3) n4 + (9.0e-5) n5  (B.26)

where 1 _< n < 6

The most accurate recults are obtained when the index n of the minimum

being used is as small as possible.

5. SUMMARY
The diameter of a small fiber can be estimated to within 1% by measuring

the distance of the diffraction pattern minimums from the center of the pattern

and applying Equation B.4, Equation B.23, and Equation B.24. The minimum
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used for measurement should be as close to the center of the diffraction pattern

as possible. The ratio X / Ds should be chosen such that

0.001 < (X/DO) < 0.5 (B.27);N
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APPENDIX C. MACINTOSH M COMPUTER PROGRAM

This appendix contains the source code for the application CALIPER

written for the MacintoshTM computer. The portions of the program that deal

with the MicronEyeTM were modified from Reference 18. Some subroutines

were extracted essentially intact from Reference 19 and Reference 20.

Programming ideas and techniques came from several of the references listed

in the Bibliography. References 19 through 22 were particularly valuable

programming references.
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